MATH-I CALCULUS AND LINEAR ALGEBRA Course Code: MATH SH 101

Lecturer: 3 Tutorial: Practical: Year: 1 Part: I Course Credit: 3

Objectives of the Course:

- Understanding the key concepts of limits and continuity and mastering techniques of differentiation and integration to use them solving geometrical and physical applications
- Understanding convergence and divergence of series and applying series expansions in engineering contexts
- Understanding matrices techniques to solve system of linear equations. Developing the concepts of vectors, vector space and vector subspace and their properties. Computing eigen-values and eigen-vectors of a matrix.

	Teaching Schedule Hours/Week			Evaluation Scheme				
Credit				Internal Evaluation		Final Evaluation		Total
Hours	Lecture	Tutorial	Practical	Theory	Practical	Theory	Practical	100
3	3	2	-	40	-	60	-	

Course Contents:

Unit 1: Function, Limit and continuity

- 1.1 Function, domain and range, graphs of few elementary functions
- 1.2 Piece-wise functions and their graphs
- 1.3 even and odd functions and their symmetric natures
- 1.4 Shifting and scaling a graph of a function
- 1.5 Limit of a function, Evaluating limits algebraically and graphically
- 1.6 One-sided limits, continuity and discontinuity, types of discontinuity,
- 1.7 Limits involving infinity, asymptotes, types of asymptotes lines (Horizontal, Vertical and oblique). Graphing of rational functions using asymptotes

Unit 2: Differentiation and its applications

- 2.1 Derivative at a point and its geometrical and physical interpretations
- 2.2 Proof of differentiability implies continuity
- 2.3 Second and higher order derivatives, Implicit differentiations
- 2.4 Tangent and normal lines on the curve, angles between the curves, Motion along a straight line, Related rates problems
- 2.5 Increasing/decreasing functions and first derivative test,
- 2.6 Local and absolute extreme values of a function

Rajarshi Janak University

[6 Hours]

[8 Hours]

- 2.7 first derivative test of finding local extreme value(s) of a function
- 2.8 Concavity and second derivative test, second derivative test of finding local extreme value(s) of a function
- 2.9 Finding global extreme values(s) of a function
- 2.10 Statements of Rolle's and Mean value theorems and their geometrical interpretation and problems related to these theorems
- 2.11 Optimization problems

Unit 3: Integration and Its applications

- 3.1 Indefinite integrals and integration techniques.
- 3.2 Integration of involving $a^2 + x^2$, $\sqrt{a^2 + x^2}$, $a^2 x^2$, $\sqrt{a^2 x^2}$, $\sqrt{x^2 a^2}$, $ax^2 + bx + c$, $\sqrt{ax^2 + bx + c}$, integration by partial fractions
- 3.3 Definite integrals and Definite integral as a Riemann sum.
- 3.4 Statements of the Fundamental Theorems of integral Calculus part I and part II and related problems

3.5 Solving first order and second order differential equations of types $\frac{dy}{dx} = f(x)$ with initial $\frac{d^2y}{dx}$

condition
$$y(x_0) = y_0$$
 and $\frac{d^2 y}{dx^2} = g(x)$ with initial conditions $y(x_0) = y_0$ and $y'(x_0) = y_0$

- 3.6 Area under curves, area between the curves
- 3.7 Solid of revolution, Volumes of solid of revolution by disk method and washer method
- 3.8 Length of a curves, arc length of a curve, area of surface of revolution
- 3.9 Improper integrals of Type I and Type II
- 3.10 Beta and Gamma functions, Properties of the beat and gamma functions, reduction formulas

Unit 4: Infinite Sequences and Series

- 4.1 Infinite Sequence, convergence and divergence of an infinite sequence, calculating the limit of a sequence
- 4.2 Bounded and unbounded sequence, non-decreasing and non-increasing sequence, monotonic sequence
- 4.3 Infinite series and partial sums, convergence and divergence of an infinite series, nth term test for divergent series
- 4.4 Integral test for convergent or divergent series (statement only), convergence or divergence of pseries
- 4.5 Convergence test of an infinite series: Direct comparison test, Limit comparison test, ratio and root test, absolute convergent and absolute convergence test theorem,
- 4.6 Taylor and Maclaurin series of a function, Taylors polynomial of order n

Unit 5: System of Linear Equations

- 5.1 System of linear equations in the matrix form, consistent and inconsistent system, Elementary row operations and solution of the system using row operations methods
- 5.2 Row and reduced echelon forms of a matrix, pivot position and row reduction algorithm to convert the matrix into echelon forms
- 5.3 Existence and unique solution of the system, Parametrically represented solution of a system, homogeneous linear system of equations and unique and parametric solution representation

Unit 6: Vector Spaces

[5 Hours]

[7 Hours]

[6 Hours]

[8 Hours]

BACHELOR DEGREE IN CIVIL ENGINEERING

- 6.1 Vectors in \mathbb{R}^2 and geometrical description of \mathbb{R}^2 , vectors in \mathbb{R}^3 and \mathbb{R}^n , algebraic properties of vectors in \mathbb{R}^n
- 6.2 Linear combination and span of the vectors in \mathbb{R}^n , Geometrical descripting of span of vectors
- 6.3 Vector space and vector subspace, subspace spanned by a set of vectors, linearly independent and linearly dependent set of vectors, Basis and dimension of vector space
- 6.4 Linear transformation, kernel and range, null space, column space of a matrix, bases for null and column space, rank of a matrix

Unit 7: Eigen-values and Eigen-vectors

[5 Hours]

- 7.1 Eigen-values and eigen-vectors of a matrix, characteristic equations, eigen-values of triangular and diagonal matrices, Eigen-spaces
- 7.2 Diagonalization of a matrix

Text Books:

- 1. "Thomas' Calculus" by George B. Thomas Jr., Maurice D. Weir, and Joel R. Hass, Pearson India
- 2. Linear Algebra and Its Applications by David C. Lay, Pearson, India

Reference Books:

- 1. Advanced Engineering Mathematics" by Erwin Kreyszig, Wiley
- 2. Calculus: Early Transcendentals" by James Stewart, Publisher: Cengage Learning India
- 3. Introduction to Matrices and Linear Transformations by D. T. Finkbeiner, 3rd Edition CBS Publisher and Distributors, Delhi.
- 4. A Text Book of Calculus I by Narayan Prasad Pahari, Santosh Ghimire, Dr. Jeevan Kafle, Arun Kumar Bhandari, Madav Prasad Poudel, Prem Gurung, Durgesh Ojha, Publisher: Asmita Publication, Kathmandu, Nepal
- A Text Book of Algebra and Geometry by Narayan Prasad Pahari, Santosh Ghimire, Dr. Jeevan Kafle, Arun Kumar Bhandari, Madav Prasad Poudel, Prem Gurung, Durgesh Ojha, Publisher: Asmita Publication, Kathmandu, Nepal
- 6. A Text Book of Linear Algebra by Tulasi Pradad Nepal, Tek Bahadur, Budhathoki, Jeevan Kafle. Publisher: Heritage Publishers and Distributors Pvt. Ltd., Kathmandu, Nepal
- A Text Book on Engineering Mathematics Volume I by S. P. Shrestha, H. D. Chaudhary, P. R. Pokharel. Publisher: Vidyarthi Pustak Bhandar, Kathmandu, Nepal
- A Text Book on Engineering Mathematics Volume III by P. R. Pokharel, H. D. Chaudhary, S. P. Shrestha. Publisher: Vidyarthi Pustak Bhandar, Kathmandu, Nepal

Evaluation Scheme:

The final evaluation will have questions from all the units. The marks distribution for all the units will be as follows:

Units	Topics	Scheduled Hours	Marks
1	Function, Limit and Continuity	6	8
2	Differentiation and Its Applications	8	11
3	Integration and Its Applications	8	11
4	Infinite Sequences and Series	6	8
5	System of Linear Equations	5	7
6	Vector Spaces	7	8
7	Eigenvalues and Eigenvectors	5	7
	Total	45 Hours	60 Marks

Note: The marks distribution shown in the table above might be subjected to minor changes.